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J.  Phys. A: Math. Gen. 18 (1985) L251-L254. Printed in Great Britain 

LETTER TO THE EDITOR 

Pseudo-critical behaviour of smoothness of self-avoiding loops 

E I Kornilov and V B Priezzhev 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, USSR 

Received 17 December 1984 

Abstract. I t  is shown that the critical point and the logarithmic singularity of the specific 
heat for the self-avoiding loop model on the square lattice can be found by introducing 
an exactly solvable auxiliary model. Evaluations of correlation functions of the latter 
model show the psuedo-critical behaviour of the density of rectilinear polymer segments. 

In a recent paper (Karowski et a1 1983) the statistical behaviour of self-avoiding loops 
on &dimensional hypercubic lattices has been studied numerically. The partition 
function of the investigated model is defined by (Rys and Helfrich 1982) 

Z ( t )  = g ( n ;  s )ms tn ,  
n,s 

where t is the monomer fugacity and g (  n ; s) denotes the number of configurations of 
self-avoiding loops with total length n in units of the lattice spacing, containing s 
non-intersecting contours with multiplicity m. Different values of m describe different 
physical systems. So, the limit m + 0 corresponds to the single polymer ring without 
self-intersection. 

The aim of the present letter is to consider the case m = 1 and to discuss an exactly 
solved model related to the self-avoiding ring polymers model on the simple square 
lattice. In this case we can rewrite the partition function ( 1 )  in the form 

Z( t )=C G(n)t",  
n 

where G ( n )  is the number of all configurations of self-avoiding loops with total length 
n. 

Consider a square M X N lattice with periodic boundary conditions. The problem 
of calculating the partition function (2) is equivalent to solving the eight-vertex model 
with the following parameters, 

w ,  =o,  w2= 1, WI = t ,  i = 3 , .  . . , 8 ,  (3) 
where all types of configurations labelled by the index i are shown in figure 1. 
Unfortunately, the set of parameters (3) belongs neither to the Baxter condition (Baxter 
1972) 

WI = w2, w3 = w4, w 5  = w6, w7 = w8, (4) 

wIw2-k w3w4= W 5 w 6 - t  w7w8 ( 5 )  

nor to the free-fermion condition (Fan and Wu 1970) 

under which the eight-vertex model has an exact solution. 
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Figure 1. Typical loop configuration. The site of type I is forbidden. 

Several years ago an auxiliary model was proposed (Priezzhev 1978) wgch is closely 
related to the self-avoiding loops problem. The idea is to put w3 = w4 = 4 2  t in (3) and 
to consider the sites of types 3 and 4 as defects on a polymer chain. Every two defects 
double the number of loops configurations, so the partition function of the auxiliary 
model can be represented in the form 

Z*( t )  = 1 G*( n ) t ” .  
n 

Here G*( n )  is the number of arrangements of a set of closed chains with total length 
n in which the above property of defects is fulfilled. The partition function (6) can 
be easily calculated by the method of Pfaffians. In the large N and M limit the result 
is (Priezzhev 1978) 

Z*(t)=exp($l /02Tda d p  1 n [ l + 4 t 2 + 2 h t c o s a  

) + 242 t ( 1 + 42 cos a ) cos p3 ( 7 )  
- 

The model has an Ising-like singularity at t ,=J2/4,  e.g. the specific heat tends to 
infinity by the law C - lnlt - t,l. 

In this letter we shall use the properties of correlation functions of the auxiliary 
model to relate the partition functions (2) and (6) and to derive the critical behaviour 
of the original model. 

Consider the correlation function corresponding to the defect density T ~ (  t )  defined 
as the probability of a site configuration weighted by w3 or w4. By the standard 
procedure described by Montroll (1964) the correlation function function is given by 

n D  = 2 / x  + QI’”, (8) 
where X is the 4 ~4 matrix 

r o  - 1  o 01 
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and the components of the 4 X 4  matrix Q are 

Qii = 0, i = 1,2,3,4,  
2 n  1 

Q I 2  = Q34 = 7 / /  d a  d p  [ l  + 2 t 2 + 2 h  t COS CY 
G7r)  

+h t ( 1  +AI  cos a )  cos P ] / 9 ( t ) ,  

Q -e /[:‘da dp[(l  + 2 t 2 + 2 h  t cos a) cos P + 2 h  t ( l  +h t cos a ) ] / 9 ( t ) ,  
23 - (27r) 

Q.. = - Q.. 11, i>j, i , j =  1,2,3,4,  

g ( t )  = 1 +4t2J5  t cos a + 2 h  t ( 1  +h t cos a )  cos p. 
where 

The plot of the ratio of the density of defects n D ( t )  to the polymer density p =  
Vt(a/at)  In Z*( t ) ,  

s ( t )  = nD(t ) /p ( t ) ,  ( 1 1 )  

is shown in figure 2. It is natural to call the function s ( t )  the ‘smoothness’ of the 
polymer rings since the sites weighted by w3 and w4 correspond to rectilinear segments 
of the polymer. One can see that the smoothness function behaves like an order 
parameter. The function s( t )  is almost constant above the critical point t ,  and rapidly 
decreases below t,. The plateau of the smoothness is not just constant, but weakly 
changes and reaches its limit value si =$  when t+a. 

Up to now we have been dealing with the exactly solved auxiliary model. To 
consider the problem of calculation of the partition function (2), we should make 
some model assumptions. First suppose that the smoothness behaves as a true order 
parameter, i.e. s ( t )  is constant above t,. Second, assume sI to be the value of this 
constant. Then for large n we have the following equality, 

G( n )  = G*( r1)2-“’1’~, (12) 
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Figure 2. Smoothness s and reduced smoothness F against fugacity. 
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since the presence of each two defects doubles the number of possible configurations 
in the original problem, and the number of defects is ns~.  

From (12) a relation follows between the partition functions Z ( t )  and Z*( t )  
above t ,  

Z( t )  = c G( n ) t ”  = c G*( n)2-ns1/2tn = G*(n) i“ = Z*( i )  (13) 
n n n 

where the new variable t’ is introduced: 

i= t / 2S~ i~ ,  t > t,. (14) 

The singularity of Z*( t )  is known, and therefore we can find the critical point of the 
model of self-avoiding loops, writing 

(15) 

This result can be compared with the numerical data of Karowski et a1 (1983). These 
authors have observed infinite fluctuations in the system of loops at temperature 
p c  = 0.86. Taking into account their definition t = e-@, we get from (15) p c  = 2 In 2 = 
0.866.. . in good agreement with numerical data. Relation (13) together with (14) 
means that the thermodynamic functions in the self-avoiding loops model have the 
same singularity as in the auxiliary model above t,, i.e. the specific heat C -In ( t  - t , )  
which is also consistent with the results of the numerical analysis. 

It should be stressed that we cannot draw any conclusions about the type of 
singularity below t ,  since s ( t )  is no longer constant at t < t,. 

To clarify the origin of the critical behaviour of the smoothness function, we have 
sonsidered the contribution of the smallest loops (the elementary square in figure 1) 
‘tb the value of s ( t ) .  By definition the proper smoothness of such loops is zero. The 
density of squares psq can be calculated by the method of Pfaffians. The result of these 
calculations is presented in figure 2, where s’ is given by 

t, = t’,2’1/~ = 2-5/4 = 0.4204 . . . . 

s’= n d ( p  -4PJ. (16) 

One can see that deleting the elementary squares makes the smoothness function more 
even. We conclude that the pseudo-critical behaviour of s ( t )  is due to the presence 
of small loops and the smoothness of the long polymer chains depends weakly on the 
fugacity. 
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